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Abstract
1.	 Organisms	are	constantly	making	tradeoffs.	These	tradeoffs	may	be	behavioural	
(e.g.	whether	 to	 focus	on	 foraging	or	 predator	 avoidance)	 or	 physiological	 (e.g.	
whether	to	allocate	energy	to	reproduction	or	growth).	Similarly,	wildlife	and	fish-
ery	managers	must	make	tradeoffs	while	striving	for	conservation	or	economic	
goals	(e.g.	costs	vs.	rewards).	Stochastic	dynamic	programming	(SDP)	provides	a	
powerful	and	flexible	framework	within	which	to	explore	these	tradeoffs.	A	rich	
body	of	mathematical	 results	on	SDP	exist	but	have	 received	 little	attention	 in	
ecology	and	evolution.

2.	 Using	directed	graphs	–	an	 intuitive	visual	model	representation	–	we	reformu-
lated	 SDP	models	 into	matrix	 form.	We	 synthesized	 relevant	 existing	 theoreti-
cal	 results	which	we	then	applied	to	two	canonical	SDP	models	 in	ecology	and	
evolution.	We	applied	these	matrix	methods	to	a	simple	illustrative	patch	choice	
example	and	an	existing	SDP	model	of	parasitoid	wasp	behaviour.

3.	 The	 proposed	 analytical	matrix	methods	 provide	 the	 same	 results	 as	 standard	
numerical	methods	as	well	as	additional	insights	into	the	nature	and	quantity	of	
other,	nearly	optimal,	strategies,	which	we	may	also	expect	to	observe	in	nature.	
The	mathematical	results	highlighted	in	this	work	also	explain	qualitative	aspects	
of	model	convergence.	An	added	benefit	of	the	proposed	matrix	notation	is	the	re-
sulting	ease	of	implementation	of	Markov	chain	analysis	(an	exact	solution	for	the	
realized	states	of	an	individual)	rather	than	Monte	Carlo	simulations	(the	standard,	
approximate	method).	It	also	provides	an	independent	validation	method	for	other	
numerical	methods,	even	 in	applications	 focused	on	short‐term,	non‐stationary	
dynamics.

4.	 These	methods	are	useful	for	obtaining,	interpreting,	and	further	analysing	model	
convergence	to	the	optimal	time‐independent	(i.e.	stationary)	decisions	predicted	
by	an	SDP	model.	SDP	is	a	powerful	tool	both	for	theoretical	and	applied	ecology,	
and	an	understanding	of	the	mathematical	structure	underlying	SDP	models	can	
increase	our	ability	to	apply	and	interpret	these	models.
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1  | INTRODUC TION

Tradeoffs	are	an	unavoidable	part	of	being	alive.	Tradeoffs	may	be	
physiological	(e.g.	how	much	energy	to	allocate	to	growth	vs.	repro-
duction;	 Rees,	 Sheppard,	 Briese,	 &	Mangel,	 1999),	 or	 behavioural	
(e.g.	how	to	balance	energy	gain	with	predator	avoidance;	Mangel	
&	 Clark,	 1986;	McNamara	 &	 Houston,	 1986).	What	 constitutes	 a	
successful	strategy	is	ultimately	influenced	by	natural	selection,	as	
strategies	that	increase	population	mean	fitness	will	tend	to	spread	
in	the	population	if	they	have	a	heritable	component.

Similarly,	conservation	ecologists	and	wildlife	or	fisheries	manag-
ers	must	also	make	tradeoffs	while	striving	to	achieve	conservation	
or	management	goals.	In	this	context,	tradeoffs	are	often	between	
immediate	 and	 future	 rewards	 (e.g.	 how	 much	 to	 harvest	 now	
while	maintaining	a	sufficient	population	to	harvest	later;	Runge	&	
Johnson,	 2002).	 The	objective	may	be	 to	 control	 an	 invasive	 spe-
cies	 (Bogich	 &	 Shea,	 2008)	 or	 ensure	 the	 long‐term	 viability	 of	 a	
population.

Optimal	control	theory	predicts	how	an	individual	should	navi-
gate	a	series	of	risks	and	rewards	to	achieve	an	objective,	subject	to	
relevant	 constraints.	Often,	 the	 rewards	may	be	probabilistic	 (e.g.	
the	probability	of	 individual	 finding	 food),	 and	 the	optimal	 control	
may	depend	on	both	the	state	of	the	individual	(e.g.	an	animal's	phys-
iological	state)	and	a	temporal	component	(e.g.	how	many	days	re-
main	in	a	season).	We	use	the	word	decision	(rather	than	control)	to	
describe	the	action	taken	by	an	individual	whenever	there	is	more	
than	 one	 possible	 action.	 These	 decisions	 include	 events	 beyond	
cognition	 such	 as	 the	 decision	 by	 an	 animal	 to	 abort	 a	 pregnancy	
based	on	their	level	of	energy	reserves.	An	optimal	decision	question	
may	be	framed	as	a	state‐dependent	Markov	decision	process.

Stochastic	dynamic	programming	(SDP)	is	a	common	method	to	
deal	 with	 state‐dependent	 Markov	 decision	 processes.	 It	 is	 com-
mon	in	both	ecology	and	resource	management	to	refer	to	both	the	
model	and	the	method	of	solving	the	model	as	SDP	(Marescot	et	al.,	
2013)	and	we	follow	this	convention.	SDP	has	a	rich	history	of	ap-
plication	and	theoretical	developments	in	a	wide	array	of	disciplines	
(Puterman,	 1994),	 including	 engineering	 (Sheshkin,	 2010),	 finance	
(Bäuerle	&	Rieder,	2011)	and	artificial	intelligence	(Sigaud	&	Buffet,	
2010).	However,	many	of	these	theoretical	advances	have	not	been	
popularized	in	the	biological	literature,	despite	their	powerful	impli-
cations	both	for	model	analysis	and	biological	interpretation.

Stochastic	dynamic	programming	has	been	used	 in	many	areas	
of	 biology,	 including	 behavioural	 biology,	 evolutionary	 biology	
and	 conservation	 and	 resource	 management	 (for	 reviews	 in	 each	
of	 these	 areas,	 see	 McNamara,	 Houston,	 and	 Collins	 (2001)	 and	
Mangel	(2015),	Parker	and	Smith	(1990),	and	Marescot	et	al.	(2013),	
respectively).

In	 some	applications	of	SDP,	one	 is	 interested	 in	 the	 temporal	
aspects	of	the	optimal	decisions,	especially	near	some	terminal	time;	
these	are	finite time horizon problems.	For	example,	we	may	expect	
an	 individual	 to	make	 riskier	 foraging	 decisions	 near	 the	 end	 of	 a	
feeding	 season	 (Bull,	 Metcalfe,	 &	 Mangel,	 1996;	 Reimer,	 Mangel,	
Derocher,	&	Lewis,	2019a).	In	many	cases,	the	optimal	decisions	are	

stationary	 (i.e.	 not	 varying	 from	 one	 time	 step	 to	 the	 next)	when	
they	are	sufficiently	 far	away	 from	the	 terminal	 time.	 In	 some	ap-
plications	of	SDP,	these	stationary	decisions	are	used	for	prediction	
(Chan	&	Godfray,	1993;	Mangel,	1989;	Shea	&	Possingham,	2000),	
rather	 than	 the	 transient	 dynamics	 near	 the	 end	 of	 the	 optimiza-
tion	period;	we	refer	to	these	as	stationary decision problems.	Finally,	
other	questions	do	not	concern	a	finite	time	period	at	all	(Mangel	&	
Bonsall,	2008;	Venner	et	al.,	2006),	but	are	infinite horizon problems. 
For	example,	managers	may	wish	to	maximize	the	total	number	of	
animals	that	may	be	harvested	indefinitely	(Runge	&	Johnson,	2002).

Stationary	decision	problems	and	infinite	horizon	problems	in	bi-
ology	are	often	solved	using	essentially	the	same	numerical,	iterative	
method,	though	it	appears	 in	the	literature	under	different	names:	
backwards	 induction	 or	 value	 iteration	 (Clark	 &	 Mangel,	 2000;	
Puterman,	1994).	Several	software	packages	have	been	created	to	
run	these,	and	other	 (e.g.	policy	 iteration)	numerical	routines	for	a	
wide	range	of	applications	in	biology	(Chadès,	Chapron,	Cros,	Garcia,	
&	Sabbadin,	2014;	Lubow,	1995;	Marescot	et	al.,	2013).

Stochastic	 dynamic	 programming	 models	 are	 typically	 con-
structed	 component‐wise,	 separately	 considering	 an	 individual	 in	
each	possible	 state	at	each	 time.	This	 component‐wise	model	 for-
mulation	hides	the	elegant	mathematical	structure	underlying	SDP.	
The	 theoretical	 results	 in	 the	 SDP	 literature	 outside	 of	 ecology	
(Puterman,	 1994)	 depend	 on	 this	 mathematical	 structure.	 In	 this	
paper,	we	promote	the	use	of	vector	and	matrix	notation	for	SDP	ap-
plications,	allowing	for	consideration	of	an	individual	in	all	possible	
states	at	each	time.	A	few	examples	of	this	approach	in	ecology	do	
exist	(McNamara,	1990,	1991;	McNamara	et	al.,	2001).	For	example,	
McNamara	(1990)	analyzed	tradeoffs	in	the	context	of	risk‐sensitive	
foraging	by	formulating	an	SDP	model	 in	the	 language	of	matrices	
and	analysing	the	eigenvalue	equation,	which	led	to	one	of	the	main	
results	we	use	here	–	a	generalization	of	the	Perron–Frobenius	theo-
rem	for	the	SDP	operator	(McNamara,	1991).	We	build	on	this	foun-
dation,	applying	results	from	general	SDP	theory	to	another	broad	
class	 of	 SDP	models	 in	 ecology	 (the	 so‐called	 ‘resource	 allocation	
models’).	We	 demonstrate	 how	 formulating	 an	 SDP	model	 in	 the	
language	of	matrices	 leads	 to	analytic	methods	 for	obtaining	opti-
mal	decisions	for	both	stationary	decision	and	infinite	horizon	prob-
lems.	We	provide	step‐by‐step	instructions	for	implementing	these	
analytic	 methods	 for	 two	 canonical	 equations	 of	 SDP	 in	 ecology	
(Mangel,	2015)	and	illustrate	key	steps	with	a	simple	example.

These	analytic	matrix	methods	have	several	notable	additional	
benefits.	A	byproduct	of	obtaining	the	optimal	decisions	in	this	way	
is	a	comprehensive	picture	of	all	other	possible	decisions.	This	pro-
vides	a	sense	of	which	other,	nearly	optimal,	decisions	we	could	also	
expect	to	observe	in	nature,	or	a	range	of	possible	management	op-
tions	with	comparable	outcomes.	The	intuition	behind	these	analytic	
results	 also	 allows	 us	 to	 explain	 non‐intuitive	 transient	 oscillating	
decisions.	Further,	ecologists	interested	in	how	an	optimally	behav-
ing	 individual's	state	changes	over	 time	typically	 run	thousands	of	
Monte	 Carlo	 simulations	 (an	 approximate	 method).	 Alternatively,	
Markov	chains	provide	an	exact	method	for	determining	the	prob-
ability	 distribution	 of	 an	 individual's	 realized	 state	 at	 each	 time	
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(Mangel	&	Clark,	1988).	We	illustrate	how	the	Markov	transition	ma-
trix	 is	 conveniently	constructed	as	a	by‐product	of	 formulating	an	
SDP	model	using	matrices.

We	 apply	 these	matrix	 methods	 to	 an	 existing	 study	 of	 host‐
feeding	behaviour	in	parasitic	wasps	(Chan	&	Godfray,	1993).

2  | MATERIAL S AND METHODS

2.1 | Stochastic dynamic programming

Stochastic	dynamic	programming	models	contain	several	key	com-
ponents	(Clark	&	Mangel,	2000).	These	include	discrete	time	steps	
t	and	a	time	horizon,	which	may	either	be	finite	with	a	terminal	time	
T,	 or	 infinite.	The	 set	of	possible	 state	variables	 x∈! =

{
x1 , … , xk

}
 

must	be	defined,	and	any	relevant	constraints	on	the	states	included.	
The	actions	available	to	an	 individual	 in	a	given	state	at	each	time	
must	be	made	explicit.	We	assume	a	finite	number	of	actions	avail-
able	to	an	individual.	The	probabilistic	state	dynamics	(e.g.	the	prob-
ability	 of	 survival	 or	 reproduction),	which	may	 vary	depending	on	
the	individual's	decision,	must	be	defined.	The	fitness	function	f(x, t),	
also	known	as	the	reward	or	value	function,	describes	the	expected	
future	reward	for	an	optimally	behaving	individual	in	state	x	at	time	
t.	 Its	 value	 is	 determined	by	 specifying	 the	dynamic	programming	
equation,	so	that	f(x, t)=max!	[future	reward,	given	state	x	at	time	t], 
where	the	maximum	is	taken	over	all	possible	decisions	and	the	ex-
pectation	is	taken	over	all	possible	future	rewards.	For	finite	horizon	
problems,	with	T	<	∞,	a	terminal	fitness	function	f(x, T)	=	Φ(x)	must	
be	specified.	Relevant	boundary	conditions	(i.e	critical	levels	of	the	
state	variable)	must	also	be	specified;	for	example,	 if	x	=	0	 implies	
mortality,	then	f(0,	t)	=	0	for	all	t,	as	there	can	be	no	further	future	
fitness	gains.	Note	that	we	used	lowercase	f	to	describe	the	fitness	
function	for	an	individual	 in	a	given	state.	When	we	later	consider	
all	states	simultaneously,	we	will	use	capital	F	to	denote	the	fitness	
vector.	We	follow	this	convention	throughout,	using	lowercase	let-
ters	to	denote	scalar	quantities	and	capital	letters	to	denote	vectors	
and	matrices.

Most	 applications	 of	 SDP	 in	 biology	 find	 their	 roots	 in	 one	 of	
two	canonical	equations	 (Mangel,	2015).	Both	have	an	 individual's	
energy	stores	x	as	the	state	variable,	μ	is	the	mortality	rate	(excluding	
starvation),	η	 is	the	probability	of	finding	food,	and	y	 is	the	energy	
gained	if	the	individual	finds	food.	In	the	first	canonical	equation,	c is 
the	daily	energetic	cost.	This	equation	describes	a	model	of	activity	

choice,	with	an	individual	choosing	between	two	possible	foraging	
patches,	so	the	decision	is	i	=	{patch	1	or	2}:

Here,	 the	probability	of	survival,	 the	probability	of	 finding	food,	 the	
energetic	costs	and	the	energetic	gains	from	finding	food	all	vary	de-
pending	on	patch	choice,	so	are	subscripted	by	i.

The	 second	 canonical	 equation	 describes	 a	model	 of	 resource	
allocation,	such	as	how	much	energy	to	devote	to	reproduction	at	a	
given	time,	so	the	decision	is	the	amount	of	energy	r	to	allocate	to	
immediate	reward:

Here	 the	 probabilities	 of	 survival	 and	 finding	 food	 do	 not	 vary	
with	 the	 individual's	 choice.	 Rather,	 the	 individual	must	 balance	
the	 immediate	 rewards	 g(r)	 of	 spending	 r	 resources	 against	 any	
possible	future	rewards.	 In	both	Equations	1	and	2,	survival	acts	
as	 a	 discount	 factor	on	 future	 rewards.	Applications	 in	 resource	
management	also	tend	to	be	structured	like	this	second	canonical	
equation	(Marescot	et	al.,	2013).

2.2 | Illustrative example

We	 illustrate	 key	 concepts	 using	 a	 simple	 patch	 choice	 example.	
Consider	 an	 individual	 in	 a	 non‐breeding	 season	 of	 length	 T	 who	
may	take	one	of	five	states	x∈! =

{
x1 , … , x5

}
	corresponding	to	their	

level	of	energy	reserves	(i.e.	x1 < … < x5).	Each	day,	t	=	1,	2,	…,	T	−	1,	
the	 individual	 chooses	 one	 of	 two	 foraging	 patches,	with	 the	 ob-
jective	of	maximizing	survival	to	time	T.	Patch	1	is	low	risk	and	low	
reward	 (η1	 =	 0.4,	e

−!1 =0.99)	 and	Patch	2	 is	 high	 risk	 and	high	 re-
ward	 (η2	 =	 0.8,	 e

−!2 =0.891).	 Probabilistic	 state	 changes	 may	 be	
represented	by	 arrows	 in	 the	directed	graph	 (Figure	1).	 If	 an	 indi-
vidual	finds	food	in	either	patch,	their	reserves	increase	by	2	units	

(1)f(x, t)=max
i=1, 2

e−!i
⏟⏟⏟
survival

⎡
⎢
⎢
⎢
⎢⎣

%if(x−ci+yi,t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

obtain food

+ (1−%i)f(x−ci,t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

donotobtain food

⎤
⎥
⎥
⎥
⎥⎦

.

(2)

f(x, t)

=max
r

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

g(r)
⏟⏟⏟
immediate
rewards

+ e−$
⏟⏟⏟
survival

⎡
⎢
⎢
⎢
⎢⎣

%f(x− r+y, t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

obtain food

+ (1−%)f(x− r, t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

donotobtain food

⎤
⎥
⎥
⎥
⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
future rewards

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

F I G U R E  1  State	and	decision‐dependent	transition	probabilities	for	the	patch	selection	example.	A	living	individual	may	be	in	1	of	5	
states	(x1, …, x5).	State	x0	is	the	absorbing	state	of	dead	individuals.	Due	to	space	constraints,	we	have	only	written	transition	probabilities	
corresponding	to	each	arrow	for	an	individual	in	state	x4.	All	arrows	in	grey	are	associated	with	the	absorbing	state	and	not	included	in	the	
matrix	Pπ	(but	are	included	in	the	Markov	matrix	P̂")
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(y1	=	y2	=	3;	dashed	arrows).	If	an	individual	does	not	find	food,	their	
reserves	decrease	by	1	unit	(c1	=	c2	=	1;	solid	arrows).	An	individual	in	
state	x1	who	does	not	find	food	that	day	dies	(i.e.	transitions	to	state	
x0,	the	absorbing	death	state).	An	individual	survives	each	of	these	
transitions	with	probability	e−!in;	an	individual	in	any	state	dies	with	
probability	1−e−!in	 (dotted	 arrows).	 These	 probabilities	 all	 depend	
on	the	patch	decision	in∈

{
patch1,patch2

}
 made by an individual in 

state	xn.	We	are	interested	in	the	stationary	decision	problem,	that	
is,	predicting	the	patch	an	individual	in	state	x	at	time	t uses, away 
from	any	transient	effects	of	the	terminal	time.	To	answer	this	ques-
tion,	we	use	an	SDP	model	with	the	first	canonical	Equation	1	as	the	
fitness	function.

2.3 | Existing methods for obtaining 
stationary decisions

Backwards	induction	is	typically	used	to	solve	stationary	decision	
problems	 (see	 Clark	&	Mangel,	 2000	 for	 an	 overview).	 This	 is	 a	
numerical	 routine	 that	 exploits	 the	 recurrence	 relation	 between	
f(x, t)	and	f(x′,	t	+	1),	for	each	x and some x′	∊ χ.	Backwards	induc-
tion	starts	by	defining	the	terminal	fitness	function,	f(x, T)	=	Φ(x),	
for	all	x.	One	then	calculates	f(x, T	−	1)	for	all	x,	using	the	values	
of	f(	 ⋅, T).	After	f	 (x, T	−	1)	 is	calculated,	one	goes	on	to	calculate	
f	 (x, T	−	2),	and	continues	in	this	way	until	f(x,	1)	 is	computed	for	
all x.	For	 large	T,	 the	optimal	decisions	are	often	stationary	from	
one	time	step	to	the	next,	depending	only	on	state,	for	t	far	from	
T,	that	is,	T – t ≫ 1.

In	 a	 similar	 fashion,	 one	 may	 solve	 infinite	 horizon	 problems	
using	 the	 method	 of	 value	 iteration,	 which	 is	 analogous	 to	 back-
wards	 induction	 applied	 repeatedly	 from	 a	 zero	 terminal	 rewards	
function	ϕ(x)	=	0	for	all	x,	until	some	convergence	criterion	for	f(x, t)	
is	reached	(see	Marescot	et	al.,	2013	for	an	overview).	We	compare	
results	obtained	using	these	numerical	methods	with	the	proposed	
matrix	methods.	All	 computations	were	performed	 in	Matlab	 (The	
MathWorks	Inc.,	Natick,	MA,	USA)	and	all	code	is	available	at	https	://
doi.org/10.5281/zenodo.2547815.	For	those	who	prefer	working	in	
r,	we	have	also	included	an	overview	of	key	r	commands	(Appendix	
S1,	online	Supplementary	Material).

2.4 | Matrix notation

While	applications	of	SDP	in	biology	typically	describe	the	fitness	
function	 component‐wise	 for	 each	 state	 x,	 such	 as	 in	 Equation	 1	
or	 Equation	 2,	 mathematical	 results	 follow	 more	 readily	 if	 these	
equations	 are	 reformulated	 in	matrix	 notation.	A	 few	papers	 and	
software	programs	use	the	language	of	matrices	(e.g.	Chadès	et	al.,	
2014;	Marescot	et	al.,	2013),	but	do	not	discuss	the	rich	theory	of	
nonnegative matrices	 (bolded	 terms	 in	Glossary,	Appendix	A)	we	
use	here.

We	 let	F(t)=
[
f(x1 , t), … , f(xk, t)

]⊤	denote	a	column	vector	of	 fit-
ness	functions	for	each	state	at	time	t.	We	do	not	here	explicitly	
consider	 death,	 the	 absorbing	 state	 x0	 (grey	 arrows	 in	 Figure	 1).	
This	 exclusion	 of	 death	 is	 necessary	 for	 the	 primitivity	 of	 Pπ, a 

condition	required	for	the	results	described	below.	Further,	each	
matrix	Pπ is substochastic	due	to	the	discounting	effect	of	survival,	
which	ensures	convergence	in	the	mathematical	results	that	follow.

We	create	a	square	k × k	matrix	of	state	transition	probabilities	
Pπ,	where	each	entry	pπ(xj, xk)	describes	the	probability	of	transition-
ing	from	state	xj	to	state	xk.	A	policy	π is a i‐tuple	of	decisions,	one	
for	each	state.	Π	denotes	the	set	of	all	possible	policies.	In	Equation	
1,	each	entry	in	π	may	take	one	of	two	values,	patch	1	or	patch	2,	
and so Π	 contains	2k	possible	policies	 (i.e.	 (number	of	possible	ac-
tions)^(number	of	states	in	χ)).	Each	policy	has	a	corresponding	ma-
trix	Pπ,	so	there	are	2

k	possible	matrices	Pπ.
We	rewrite	Equation	1	using	matrix	notation	as

where	 the	maximum	 is	 taken	 over	 each	 of	 the	 independent	 vector	
components.	Letting	G! =

[
g!,1, … , g!,k

]⊤	be	a	vector	of	immediate	re-
wards,	we	can	similarly	rewrite	Equation	2	as

2.5 | Matrix notation for illustrative example

For	our	illustrative	patch	choice	example,

and π	=	{i1, …, i5}	describes	the	patch	choices	for	individuals	in	states	x1 
through	x5.	Intuition	may	be	gained	by	comparing	Pπ	with	Figure	1,	where	a	
black	arrow	from	state	xj	to	xk	correspond	to	entry	pπ(xj, xk)	in	Pπ.	In	our	ex-
ample,	each	patch	choice	i1, …, i5	is	equal	to	patch	1	or	patch	2,	giving	rise	
to	values	of	μ1 or μ2, and η1 or η2.	Thus,	there	are	2

5	possible	matrices	Pπ.
Note	that	in	this	example,	the	locations	of	the	nonzero	entries	

in Pπ	are	the	same	for	all	π ∊ Π.	In	other	applications,	this	need	not	
be	the	case.	A	nonzero	entry	of	Pπ	will	change	 location	between	
different	policies	if	the	corresponding	arrow	in	the	directed	graph	
changes	the	nodes	that	it	connects,	rather	than	just	changing	the	
probability	 associated	 with	 that	 arrow	 (e.g.	 the	 parasitoid	 wasp	
example	below).

2.6 | Analytic method for activity choice problems

We	now	describe	a	method	for	obtaining	the	stationary	policy	for	SDP	
models	 of	 form	 (3)	 using	 a	 generalization	 of	 the	 Perron–Frobenius	
theorem	(For	the	classical	Perron–Frobenius	theorem	in	the	context	of	
matrix	population	models	see	Caswell	 (2001))	by	McNamara	 (1991).	
We	highlight	relevant	mathematical	results	and	include	full	technical	
details	in	Appendix	S2,	online	Supplementary	Material.	Each	matrix	Pπ 
has	k eigenvalues λπ,j,	which	we	order	according	 to	 their	magnitude	

(3)F(t)=max
!∈Π

P!F(t+1),

(4)F(t)=max
!∈Π

[
G! +P!F(t+1)

]

(5)P! =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 e
−"i1 #i1 0 0

e
−"i2 (1−#i2 ) 0 0 e

−"i2 #i2 0

0 e
−"i3 (1−#i3 ) 0 0 e

−"i3 #i3

0 0 e
−"i4 (1−#i4 ) 0 e

−"i4 #i4

0 0 0 e
−"i5 (1−#i5 ) e

−"i5 #i5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

https://doi.org/10.5281/zenodo.2547815
https://doi.org/10.5281/zenodo.2547815
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with	subscripts	 j	=	1,	…,	k	 so	that	 |λπ,1|	≥	⋯	≥	 |λπ,k|.	Each	eigenvalue	
λπ,j	has	a	corresponding	right	eigenvector Vπ,j.	The	optimal	policy	π* is 
defined	as	the	policy	satisfying.

for	V*	satisfying	PπV*	=	λ*V*.	If	P!∗ is primitive	(see	Appendix	S3,	online	
Supplementary	Material	for	details),	the	generalized	Perron–Frobenius	
states	 that	P!∗	has	a	uniquely	defined	dominant	eigenvalue	!"∗ ,1 and 
corresponding	right	eigenvector	V!∗ ,1,	which	determine	the	asymptotic	
behaviour	of	F(t)	according	to

that	 is,	F(t)	decays	exponentially	according	to	(!"∗ ,1 )
− t	and	converges	

in	 structure	 to	V!∗ ,1 as t	 →	 −∞.	 This	 dominant	 eigenvalue	 satisfies	
!"∗ ,1=max" !",1	 (McNamara,	1991).	 If	we	are	 interested	 in	obtaining	
the	stationary	policy	analytically,	without	using	backward	induction	or	
value	iteration,	we	may	thus	follow	the	steps	in	Box	1.

Note	 that	 primitivity	 is	 a	 sufficient	 but	 not	 necessary	 condi-
tion	 for	 π*	 to	 be	 the	 optimal	 stationary	 strategy.	 The	 assumption	
of	primitivity	can	usually	be	satisfied	by	omitting	any	absorbing,	or	
otherwise	redundant,	states	(McNamara	et	al.,	2001).	If	there	truly	
are	multiple	optimal	strategies	(i.e.	step	3	in	Box	1	does	not	have	a	
unique	answer),	this	method	will	identify	all	of	them.

What	is	more	likely	than	multiple	truly	optimal	policies	is	that	
there	 are	 several	 policies	 which	 are	 nearly	 optimal,	 with	 corre-
sponding	 dominant	 eigenvalues	 just	 slightly	 smaller	 than	 !"∗ ,1 
(Mangel,	 1991).	 This	 is	 one	 of	 the	 strengths	 of	 this	 type	 of	 ap-
proach;	by	calculating	the	asymptotic	properties	of	the	SDP	model	
explicitly	 for	 each	 possible	 policy,	 we	 not	 only	 find	 the	 optimal	
policy,	but	also	obtain	information	about	which	other	policies	are	
nearly	optimal.

We	 applied	 the	 steps	 in	Box	 1	 to	 the	 illustrative	 patch	 choice	
example	to	obtain	the	stationary	decisions.	We	also	found	policies	
which	are	nearly	optimal	by	looking	at	which	matrices	Pπ	have	domi-
nant	eigenvalues	within	1%	of	!"∗ ,1.	The	properties	of	P!∗	are	not	only	
relevant	 as	 t	→	∞,	but	 also	 for	understanding	 transient	behaviour	
during	 convergence.	For	 an	example	 illustrating	how	 the	other	ei-
genvalues	of	P!∗	may	lead	to	surprising	oscillations,	see	Appendix	S4,	
online	Supplementary	Material.

2.7 | Analytic method for resource 
allocation problems

Using	 results	 from	 general	 SDP	 theory	 (Appendix	 S2,	 online	
Supplementary	Material),	we	know	that	an	optimal	stationary	policy	
π*	exists	for	equations	of	form	(4)	and	that	for	any	policy	π	there	ex-
ists	a	unique	solution	F̃	satisfying	F̃" =G" +P" F̃".	This	solution	has	the	
form	F̃" = (I−P" )

−1 G",	which	can	be	seen	using	the	recursive	nature	
of	this	equation.	For	a	given	stationary	policy	π,

If	we	increase	T,	 the	number	of	time	steps	under	consideration	in-
creases.	Alternatively,	we	may	fix	T	and	look	increasingly	far	back	in	
time	(i.e.	letting	τ	→	∞).	Mathematically,	these	are	equivalent;	we	are	
making	the	time	period	under	consideration	very	large,	whether	by	
changing	the	initial	time	or	the	terminal	time.	As	τ	→	∞,	Part	B	→	0,	
since |λπ,1|	<	1	for	substochastic	matrices	such	as	these	 (Appendix	
S2,	online	Supplementary	Material).	Part	A	is	a	matrix	geometric	se-
ries	with	|λπ,1| < 1, so

as τ	→	∞,	where	 I	 is	 the	k × k	 identity	matrix.	The	solution	corre-
sponding	 to	π*	 is	 the	 largest	 of	 the	 solutions	 corresponding	 to	 all	
π ∊ Π,	that	is,

Thus,	 for	 SDP	 problems	 following	 the	 second	 canonical	 equa-
tion,	the	steps	in	Box	2	determine	the	optimal	stationary	policy.

2.8 | Host feeding behaviour of parasitic wasps

The	evolution	of	insect	parasitoid	behaviour	has	been	an	especially	
fruitful	 area	 of	 SDP	 research	 (Charnov	 &	 Skinner,	 1984;	 Clark	 &	

P!∗V∗=max
!

P!V
∗,

lim
t→−∞

(!"∗ , 1 )
−tF(t)∝ V"∗ , 1 ,

F(T−1)=G! +P!F(T)

F(T−2)=G! +P!
[
G! +P!F(T)

]

=G! +P!G! +P!P!F(T)

⋮

F(T−")=
"−1∑
q=0

(P! )
qG!

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
A

+ (P! )
"F(T)

⏟⏞⏟⏞⏟
B

.

(6)
!−1∑
q=0

(P" )
qG" → (I−P" )

−1 G"

F̃"∗ =max
"∈Π

F̃" .

BOX 1 Stationary policy for activity choice problems

1.	Determine	 the	 set	 of	 all	 possible	 policies	π ∊ Π and con-
struct	the	corresponding	matrices	Pπ

2.	Calculate	the	dominant	eigenvalue	λπ,1	of	each	matrix	Pπ

3.	Find	 the	 largest	 of	 these	 dominant	 eigenvalues: 
!"∗ ,1=max"∈Π !",1

4.	Confirm	that	the	corresponding	matrix	P!∗	is	primitive,	and	
if	so,	π*	is	the	stationary	policy

BOX 2 Stationary policy for resource allocation 
problems

1.	Determine	 the	 set	 of	 all	 possible	 policies	π ∊ Π and con-
struct	the	corresponding	Pπ and Gπ

2.	Calculate	F̃" = (I−P" )
−1G"	for	each	policy

3.	Determine	which	 policy	π*	 yields	 the	 largest	 F̃"; π*	 is	 the	
optimal	stationary	policy
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Mangel,	2000;	Mangel,	 1989).	We	apply	our	method	 to	Chan	and	
Godfray's	 (1993)	 resource	 pool	 model	 of	 host	 feeding	 behaviour	
in	parasitoid	wasps,	where	an	adult	 female	wasp	 requires	host	 re-
sources	 both	 for	 maintenance	 as	 well	 as	 the	 maturation	 of	 eggs.	
Upon	encountering	a	host,	 she	must	choose	whether	 to	use	 it	 for	
host	 feeding	or	 for	 oviposition.	 If	 she	uses	 the	host	 for	 food,	 she	
forgoes	immediate	fitness	rewards	but	gains	energy	with	which	she	
may	 obtain	 future	 rewards.	 Chan	 and	 Godfray's	 goal	 was	 to	 pre-
dict	the	optimal	state‐dependent	feeding	strategy	of	such	parasitic	
wasps,	specifically	the	stationary	energetic	threshold	xc	below	which	
an	adult	female	wasp	is	predicted	to	host	feed	rather	than	oviposit,	
provided	she	was	neither	close	to	some	terminal	 time	nor	running	
out	of	eggs.

Chan	and	Godfray	described	an	 individual's	physiological	 state	
with	a	single	variable	x.	Time	was	scaled	so	that	each	time	step	corre-
sponds	to	the	amount	of	time	it	takes	to	lose	one	unit	of	energy;	for	
example,	if	an	individual's	state	is	x	=	10,	that	individual	can	survive	
10	time	steps	without	feeding	before	death	by	starvation	occurs.

The	probability	of	finding	a	host	over	one	time	step	is	η.	If	a	host	
is	not	encountered,	the	wasp's	state	decreases	by	1	for	daily	mainte-
nance.	 If	 a	host	 is	 encountered	and	 the	wasp	decides	 to	host	 feed,	
her	state	decreases	by	1	for	daily	maintenance	but	increases	by	α,	the	
energy	gained	from	host	feeding.	 If	 instead	she	parasitizes	the	host,	
her	state	decreases	by	1	for	daily	maintenance	and	then	further	de-
creases by β,	 the	 cost	of	 egg	maturation.	However,	 she	 receives	 an	
immediate	fitness	gain	of	1	unit.	Her	daily	survival	probability	 is	e−μ, 
where	μ	is	the	instantaneous	risk	of	mortality.	If	x	=	0,	the	wasp	dies	
of	starvation.	Chan	and	Godfray	used	parameters	η	=	0.2,	α	=	30,	and	
μ	=	0.0125.	They	considered	two	values	for	the	cost	of	egg	maturation,	
β	=	4	and	16,	but	we	consider	only	β	=	4.	The	largest	possible	x value 
and	the	terminal	time	T	were	chosen	to	be	large	enough	that	they	did	
not	affect	the	threshold	value	between	host	feeding	and	parasitizing.	
As	they	did	not	state	these	values	explicitly,	we	used	75	as	an	upper	
bound	for	x and T	=	1,000.

The	resulting	SDP	equation	is

with	boundary	conditions	f(x, T)	=	0	and	f(0,	t)	=	0	for	all	x and t.	We	
rewrite	Equation	7	as

where	 i	 =	 1	 denotes	 parasitizing	 and	 i	 =	 2	 denotes	 host	 feeding,	
g1	=	1,	g2	=	0,	c1	=	−β, and c2	=	α.	This	now	resembles	the	second	
canonical	Equation	2	and	can	thus	be	written	as	Equation	4,	where	

each	π ∊ Π is a k‐tuple	of	ones	and	twos.	Each	π	has	a	corresponding	
Pπ and Gπ	(for	more	details,	see	Appendix	S5,	online	Supplementary	
Material).	 For	 each	 π ∊ Π,	 we	 calculated	 F̃" = (I−P" )

−1 G"	 and	 then	
determined	which	was	 largest.	 The	 corresponding	policy	π*	 is	 the	
optimal	stationary	policy.

2.9 | A computational note

The	number	of	policies	π	which	need	 to	be	explored	grows	expo-
nentially	 as	 the	 number	 of	 states	 k	 increases.	 In	 both	 of	 our	 ex-
amples,	 ∏	 contained	 2k	 possible	 policies	 (=	 (number	 of	 possible	
actions)^(number	of	states	in	χ)).	It	quickly	becomes	computationally	
unwieldy	to	explore	each	of	 these	options.	Fortunately,	 this	 is	not	
necessary	because	the	decision	made	in	each	state	is	independent	of	
the	optimal	decision	of	any	other	state;	observe	that	f	(x, t)	does	not	
depend	on	f(x′, t)	for	any	other	state	x'.	For	example,	in	the	parasitic	
wasp	problem,	we	first	considered	π	=	{1,	1,	…,	1}.	We	then	checked	
whether	F̃"	increased	if	π	=	{2,	1,	…,	1}.	If	so,	we	left	2	in	that	location,	
if	not,	we	returned	it	to	1.	We	then	checked	whether	F̃"	was	greater	
when	the	second	entry	of	π	was	2,	again	retaining	2	in	that	location	if	
so,	and	discarding	it	if	not.	Continuing	in	this	way	reduced	the	num-
ber	of	policies	considered	from	2k	to	k + 1.

2.10 | Forward iteration using Markov chains

Monte	 Carlo	 simulations	 are	 often	 used	 to	 study	 the	 realized	
states	of	an	optimally	behaving	 individual	over	time	(see	Clark	&	
Mangel,	2000	for	details).	Many	such	simulations	are	required	to	
get	an	approximation	of	the	probability	distribution	of	the	individ-
ual's	state	over	time.	One	way	to	obtain	the	exact	solution,	rather	
than	 these	 approximations,	 is	 through	 the	use	of	Markov	 chains	
(Mangel	&	Clark,	1988).	Component	wise	formulation	of	SDP	mod-
els,	 however,	means	 that	 this	 approach	 is	 often	 not	 considered.	
We	suspect	this	is	because	it	appears	far	removed	from	the	para-
digm	of	component	wise	backwards	induction	already	in	use,	and	
may	seem	 less	 intuitive	 than	Monte	Carlo	simulations.	However,	
it	may	be	 simpler	 to	obtain	exact	Markov	chain	 results	 than	 the	
approximate	Monte	Carlo	results,	provided	the	problem	is	already	
formulated	using	matrices.

To	 see	 this,	 let	 M	 denote	 a	 Markov matrix,	 where	
m(xk, xj)	=	Pr(transitioning	from	state	xj	 to	state	xk	 in	one	time	step).	
Recall	that	pπ(xj, xk)	=	Pr(transitioning	from	state	xj	to	state	xk	in	one	time	
step)	under	policy	π	and	that	Pπ is a substochastic matrix.	This	can	eas-
ily	be	modified	to	be	a	true	stochastic	matrix	P̂",	with	rows	summing	to	
1,	by	adding	the	appropriate	column	and	row	for	any	absorbing	states	
such	as	death	(grey	arrows	in	Figure	1).	The	Markov	matrix	correspond-
ing	to	the	SDP	model	for	a	given	policy	π	is	then	M= P̂⊤#,	the	transpose	
of	matrix	P̂".	Let	z(x, t)	=	Pr(an	optimally	behaving	individual	is	in	state	
x	at	time	t),	with	vector	notation	Z(t).	We	obtain	the	probability	of	the	
individual	being	in	each	state	using	the	forward	recursion	equation

(7)
f(x, t)=max

encounterhost
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,

(8)
f(x, t)= max

i∈{1,2}
![gi+e−"f(x−1+ci,t+1)]

+ (1−!)e−"f(x−1,t+1),

(9)Z(t+1)=M(t)Z(t)= (P̂"(t))
⊤Z(t), Z(0)= z0,
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where	z0	is	a	probability	mass	function	for	the	individual's	initial	state.
We	calculated	 the	probability	 that	an	 individual	 is	 in	state	x	at	

time	t	for	the	parasitic	wasp	example	using	this	method	of	Markov	
chains.	We	assumed	z0 ∼	Poisson(40),	and	considered	t	=	1,	…,	15.

3  | RESULTS

3.1 | Illustrative example

In	 the	patch	 choice	example,	 an	 individual	 in	 each	of	 the	5	 states	
has	 the	 same	2	available	patch	choices,	 so	 there	are	25	=	32	pos-
sible	policies,	π1, …, π32	(Table	1).	Each	of	these	policies	corresponds	
to	a	matrix	Pπ,	which	 takes	 the	 form	of	Equation	5.	We	calculated	
the	dominant	eigenvalue	of	each	of	these	32	matrices	(Table	1)	and	
found	 the	 largest	 of	 these	 dominant	 eigenvalues	 was	!"∗ ,1=0.97, 
corresponding	to	policy	π*	=	{patch	2,	patch	2,	patch	1,	patch	1,	patch	
1}.	The	corresponding	matrix	is

By	checking	sequentially	whether	(P!∗ )" is positive	for	ξ	=	1,	2,	…,	we	
found	that	(P!∗ )6 	is	positive,	so	P!∗	is	primitive.	Thus	the	conditions	of	
the	generalized	Perron‐Frobenius	theorem	are	satisfied	and	we	know	
that	the	rewards	vector	F(t)	will	asymptotically	decay	exponentially	ac-
cording	to	!t

"∗ ,1
,	its	structure	will	tend	towards	that	of	the	corresponding	

right	eigenvector	V!∗ ,1,	and	policy	π*	is	the	stationary	policy.	We	con-
firmed	this	using	the	typical	method	of	backwards	induction	(Figure	2).

We	determined	which	of	the	dominant	eigenvalues	λπ,1	of	Pπ	for	
each	policy	π	(Table	1),	were	within	1%	of	!"∗ ,1	and	found	five	such	
policies:	{1,2,1,1,1},	{1,2,2,1,1},	{2,1,1,1,1},	{2,1,2,1,1},	and	{2,2,2,1,1},	
where	1's	and	2's	denote	patches	1	and	2,	respectively.

3.2 | Host feeding behaviour of parasitic wasps

Using	the	method	outlined	in	Box	2,	the	optimal	stationary	policy	π* 
is	to	host	feed	if	x	≤	xc	=	27,	the	stationary	threshold,	and	to	parasitize	

otherwise.	This	stationary	policy	was	the	same	as	that	found	using	
backwards	induction	(Figure	3).

We	 performed	 Monte	 Carlo	 simulations	 (Figure	 4a),	 against	
which	we	compared	the	exact	solutions	obtained	with	the	method	

(10)P!∗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0.71 0 0

0.18 0 0 0.71 0

0.71 0.59 0.71 0.71 0.40

0.71 0.71 0.59 0.71 0.40

0 0 0 0.59 0.40

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

 

Policies ∏

π1 π2 π3 π4 π5 ⋯ π* ⋯ π32

Patch	choice

i1 1 1 1 1 1  2  2

i2 1 1 1 1 1  2  2

i3 1 1 1 1 2 ⋯ 1 ⋯ 2

i4 1 1 2 2 1  1  2

i5 1 2 1 2 1  1  2

λπ,1 0.94 0.90 0.94 0.89 0.96 ⋯ 0.97 ⋯ 0.89

TA B L E  1  All	possible	policies	π	(i.e.	the	
patch	choice	between	patch	1	and	2	for	
an	individual	in	each	of	the	five	possible	
states)	and	the	dominant	eigenvalue	λπ,1 
of	each	policy's	associated	matrix	Pπ.	The	
stationary	policy	π*	is	the	one	with	the	
largest	dominant	eigenvalue,	in	grey

F I G U R E  2  Solution	(obtained	using	backwards	induction;	
arrow	at	top)	of	the	illustrative	patch	choice	stochastic	dynamic	
programming	example.	Top:	Asymptotic	exponential	decay	of	
the	fitness	vector	F(t)	backwards	in	time,	as	t	becomes	further	
away	from	the	terminal	time.	The	bottom	curve	is	f(x1, t)	and	
the	top	curve	is	f(x5, t),	with	the	fitness	curves	for	states	x2	to	
x4	in	between.	Middle:	Normalized	solution	of	F(t)	converging	
backwards	in	time	to	the	right	eigenvector	V!∗ ,1	(grey	dashed	lines)	
corresponding	to	the	stationary	policy	π*.	Bottom:	Convergence	
backwards	in	time	to	the	stationary	policy,	π*	=	{patch	2,	patch	2,	
patch	1,	patch	1,	patch	1}
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of	Markov	chains	(Figure	4b).	We	also	calculated	the	probability	that	
the	individual	is	in	each	state,	conditional	on	the	individual	surviving	
to	that	time	(Figure	4c).

4  | DISCUSSION

Formulating	an	SDP	problem	using	matrices	allowed	us	to	analyti-
cally	determine	optimal	stationary	policies	and	interpret	the	nature	
of	 convergence	 to	 these	 stationary	 policies.	One	 of	 the	most	 no-
table	 benefits	 of	 applying	matrix	 tools	 to	 SDP	analysis	 is	 a	 better	
understanding	of	the	relative	performance	of	other	stationary	poli-
cies.	Numerical	methods	result	in	a	single,	optimal	stationary	policy.	
However,	 there	may	 be	 several	 stationary	 policies	which	 perform	
nearly	as	well	so	as	to	be	indistinguishable	in	light	of	the	uncertainty	
in	parameter	estimates	and	model	structure	(Mangel,	1991).	Gaining	
a	 better	 picture	 of	 all	 policies	with	 comparable	 fitness	 values	 can	
provide	a	range	of	good	options	for	managers,	or	help	interpret	field	
observations.	For	example,	two	distinct	colour	morphs	of	the	desert	
flower	Linanthus parryae	coexist	in	many	areas	(Epling	&	Dobzhansky,	
1942;	Wright,	 1943),	 and	multiple	 life	 history	 strategies	 –	 annual,	
biennial,	 and	 iteroparous	–	 also	 coexist	within	 a	 single	 population	
of	Streptanthus tortuosus,	a	Californian	wildflower	(Gremer	et	al.,	in	
review).	Stable	coexistence	suggests	similar	lifetime	fitness	between	
distinct	strategies.

The	matrix	of	state	transition	probabilities	Pπ	 is	useful	not	only	
for	finding	stationary	decisions	but	also	for	studying	the	evolution	
of	an	optimally	behaving	 individual's	state	over	time	using	Markov	
chains	as	the	Markov	transition	matrix	M(t)	 is	constructed	as	a	by‐
product	of	constructing	Pπ.

In	 stationary	decision	and	 infinite	horizon	problems,	numerical	
iterative	 methods	 require	 the	 user	 to	 specify	 a	 suitable	 stopping	
time	 criterion.	 This	may	 be	 the	 number	 of	 time	 steps	 over	which	
the	optimal	policy	does	not	change	or	a	requirement	that	the	max	
norm, || ⋅ ||∞	(or,	alternatively,	the	span	seminorm	(Puterman,	1994))	
between	successive	iterations	of	the	fitness	function	be	very	small	
(Marescot	et	al.,	2013).	For	example,	 if	we	set	a	stopping	criterion	

for	backwards	induction	of	||F(:,	T	−	(t	+	1))	−	F(:,	T	−	t)||∞ < ϵ	=	0.001,	
in	the	model	for	the	parasitic	wasp,	we	would	stop	at	time	T	−	391.	
However,	we	can	see	in	Figure	3,	that	this	terminates	the	iterative	
method	before	the	stationary	policy	is	achieved.	If,	instead,	we	used	
the	stopping	criterion	of	Boutilier,	Dearden,	and	Goldszmidt	(2000),	
which	requires	||F(:,	T	−	(t	+	1))	−	F(:,	T	−	t)||∞ < ϵ(1	−	e−μ)/(2e−μ),	where	
e−μ	 is	 the	 discount	 factor	 in	 this	 example,	 then	we	would	 stop	 at	
time	T	−	791,	by	which	time	the	stationary	policy	has	been	reached.	
Analytic	 computation	 using	 matrix	 analytic	 methods	 can	 confirm	
that	convergence	to	the	true	optimal	solution	has	been	reached	by	
the	stopping	time.

For	applications	with	a	 level	of	complexity	similar	to	those	dis-
cussed	 here,	 computational	 constraints	 will	 likely	 be	 minor.	 For	
example,	all	of	the	code	required	in	our	examples	using	any	of	the	
methods	 considered	 (i.e.	 backwards	 induction	 or	matrix	methods)	
ran	 in	 less	 than	20	s	on	a	modern	 laptop	PC	 (Intel(R)	Core(TM)	 i7	
CPU,	32	GB	of	RAM,	and	a	64‐bit	operating	 system).	We	suspect	
that	the	numerical	iterative	methods	will	tend	to	find	solutions	faster	
than	the	matrix	analytic	methods	in	most	cases,	though	we	have	not	
given	this	a	thorough	treatment	here.	For	both	matrix	and	numeri-
cal	methods,	computational	complexity	increases	exponentially	with	
the	addition	of	more	state	variables	(e.g.	simultaneous	consideration	

F I G U R E  3  Optimal	decisions	of	the	parasitic	wasp	model	of	
Chan	and	Godfrey	(1993),	obtained	using	backwards	induction.	The	
policy	at	time	t	=	1	is	the	stationary	policy,	which	is	the	same	as	
that	obtained	using	our	proposed	matrix	method
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F I G U R E  4  Changes	in	an	optimally	behaving	individual's	state	
in	the	parasitic	wasp	example.	(a)	20	Monte	Carlo	simulations.	If	we	
continued	to	run	more	of	these,	and	calculated	the	proportion	of	
simulations	in	each	state	at	a	given	time,	we	would	end	up	with	(b).	
(b)	Heat	map	of	the	probability	of	being	in	a	given	state	at	a	given	
time,	obtained	using	Markov	chains.	(c)	Heat	map	of	the	probability	
of	being	in	a	given	state	at	a	given	time,	conditional	on	surviving	to	
that	time,	obtained	using	Markov	chains
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of	an	individual's	age,	reproductive	state,	energetic	state,	etc.),	lead-
ing	to	the	‘curse	of	dimensionality’	(Bellman,	1957).	If	multiple	state	
variables	 must	 be	 considered,	 other	 methods	 may	 become	 more	
appropriate,	 requiring	 approximate	 dynamic	 programming	 meth-
ods	 (Powell,	 2007)	 such	 as	 reinforcement	 learning	 (Frankenhuis,	
Panchanathan,	&	Barto,	2018),	or	more	heuristic	methods	(Nicol	&	
Chadès,	2011).

There	 are	 similarities	between	 the	mathematical	 SDP	 results	
described	here	and	other	areas	of	ecological	theory.	For	example,	
analytical	eigenvalue	equations	have	been	used	to	study	the	evo-
lution	of	optimal	life	history	strategies	(Bulmer,	1994;	Charnov	&	
Schaffer,	1973).	Selection	on	life	history	strategies	has	also	been	
considered	in	the	context	of	matrix	population	models,	where	sen-
sitivity	 analysis	 on	 expected	 lifetime	 reproduction	 (R0)	 indicates	
the	strength	of	selection	acting	on	a	given	life	history	parameter	
(see	Caswell,	2001	for	an	overview).	Theoretical	results	on	Markov	
chains	with	rewards	initially	developed	in	the	context	of	stochastic	
dynamic	programming	(Howard,	1960)	have	recently	been	applied	
to	studies	 in	demography	(Caswell,	2011;	Van	Daalen	&	Caswell,	
2017).

We	 do	 not	 propose	 that	 these	 matrix	 methods	 replace	 back-
wards	induction	or	value	iteration,	but	rather	that	they	are	additional	
tools.	The	two	approaches	are	complementary,	and,	ideally,	will	be	
used	in	concert.	Even	if	one	is	interested	in	transient	dynamics	near	
the	terminal	time,	running	that	same	model	until	 it	reaches	its	sta-
tionary	decision	state	and	 then	confirming	 that	 it	has	 reached	the	
correct	state	with	our	proposed	matrix	methods	would	be	an	excel-
lent	check	for	errors	in	the	numerical	code.

The	 examples	we	have	 considered	 here	were	 chosen	 for	 their	
simplicity	and	general	applicability.	One	of	the	benefits	of	SDP,	how-
ever,	is	model	flexibility.	For	example,	some	SDP	applications	include	
variable	time	increments;	e.g.	f(x, t)	is	a	function	of	both	f(x, t + τ)	and	
f(x, t	 +	1)	 for	 some	 integer	 τ	 (Mangel,	 1987).	Others	 require	more	
than	one	state	variable	(Brodin,	Nilsson,	&	Nord,	2017),	which	would	
need	to	be	dealt	with	using	either	tensors	or	matrices	incorporating	
multiple	states.	These	modifications	will	need	to	be	dealt	with	on	a	
case‐by‐case	basis,	building	from	the	foundations	of	the	two	canon-
ical	equations.

5  | CONCLUSION

We	 have	 illustrated	 an	 alternative	 formulation	 of	 SDP	 models	 in	
biology,	using	the	language	of	matrices,	as	well	as	highlighted	use-
ful	applications	of	relevant	mathematical	results.	For	two	canonical	
equations	of	SDP	in	ecology,	we	used	these	mathematical	results	to	
analytically	obtain	the	optimal	stationary	decisions.	This	resulted	in	
additional	insights	into	the	existence	and	nature	of	alternate,	nearly	
optimal	policies,	as	well	as	novel	 insight	 into	the	nature	of	conver-
gence.	The	transition	matrices	required	for	this	method	also	allowed	
for	straightforward	 implementation	of	Markov	chains	to	study	the	
probability	 distribution	 of	 an	 individual's	 state.	We	 hope	 this	 will	
encourage	 the	 incorporation	 of	 further	 results	 from	 SDP	 theory	

outside	 ecology	 and	 expand	 the	 standard	 toolkit	 used	 to	 analyse	
SDP	models	 in	ecology,	evolutionary	biology,	conservation	and	re-
source	management.
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APPENDIX A
Glossary of matrix terminology
For	a	square	matrix	P,	of	size	k × k,	we	remind	the	reader	of	the	fol-
lowing	definitions:

• dominant eigenvalue	of	P:	the	largest	(in	magnitude)	of	all	eigen-
values	of	P

• eigenvector	of	P:	a	vector	of	length	k	which,	when	multiplied	by	P, 
changes	only	by	multiplication	with	a	scalar,	i.e.	PV	=	λV,	where	λ is 
the	associated	eigenvalue

• eigenvalue	of	P:	a	scalar	(real	or	complex	number)	λ	with	the	prop-
erty	that	PV	=	λV,	where	V	is	the	eigenvector	corresponding	to	λ

• Markov matrix: a non-negative matrix	whose	 rows	 (or,	 equiva-
lently,	columns)	sum	to	1;	also	known	as	a	stochastic	matrix

• non-negative matrix:	a	matrix	where	each	of	the	entries	is	≥0
• positive matrix:	a	matrix	where	each	of	the	entries	is	>0
• primitive matrix:	a	matrix	for	which	Pξ is positive	for	some	integer	ξ
• substochastic matrix:	a	non‐negative	matrix	whose	rows	sum	to	
≤1,	with	at	least	one	row	summing	to	<	(or,	equivalently,	columns)
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Rz Gdkoetk P bnllUmcr

Ud gWud odqenqldc Wkk ne ntq bnlotsWshnmr hmL�SK�A —Wbbdrrhakd Ws cnh.fl9$417fl“ydmncn$14367fl4($

Gnvdudq: enq qdWcdqr vgn Wqd lnqd bnlenqsWakd hm P: vd oqnuhcd W pthbj nudquhdv ne sgd lWsqhw

bnllWmcr mdbdrrWqx sn hlokdldms sghr ldsgnc hm P$

Wbshnm P bnllWmc
bqdWsd W rptWqd ydqn lWsqhw N ne rhyd j O≥ lWsqhw—9:j:j(
bqdWsd W ydqn udbsnq F ne kdmfsg j F≥ lWsqhw—9:j:fl(
Wrrhfm m%ti. tj( 9 A hm lWsqhw N O)wi. wj[≥ B
ltkshokx lWsqhbdr Wmc udbsnqr Π ×Π —d$f$: OΠ ×ΠF(
bqdWsd W j · j hcdmshsx lWsqhw chWf—j(

sqWmronrd ne lWsqhw N s—O(
hmudqrd ne lWsqhw N —h$d$: N�+( rnkud—O(

dhfdmuWktdr ne N x≥ dhfdm—O(, x0uWk Wqd sgd dhfdmuWktdr
dhfdmudbsnqr ne N x≥ dhfdm—O(, x0udb Wqd sgd dhfdmudbsnqr

bgdbj rtl ne dWbg qnv hm lWsqhw N qnvrtlr—O(

R1 PdkduUms sgdnqx

Sgd FdmdqUkhydc Odqqnm,Eqnadmhtr sgdnqdl -IbMUlUqU: z77z(

LbMWlWqW —fl88fl( oqdrdmsdc sgd sgdnqdl hm sgd enql vd gWud trdc gdqd: ats sghr qdrtks qdkhdr

gdWuhkx nm qdrtksr eqnl —RkWcjx: fl865, Fqdx: fl873, LbMWlWqW: fl889($

Bnmrhcdq Wm dptWshnm ne sgd enql

θ−T − 9 lˆs
ξ

NξT
−
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Wmc cdzmd sgd noshlWk onkhbx ξ− Wr sgWs rWshrexhmf

Nξ�T
− 9 lˆs

ξ
NξT

−ψ

He Nξ� hr oqhlhshud —h$d$: N µ
ξ� / + enq rnld µ / +(: sgdm sgd enkknvhmf Wqd sqtd. —h( sgd cnlhmWms

dhfdmuWktd θξ�.+ bnqqdronmchmf sn Nξ� rWshrzdr θξ�.+ 9 lˆsξ θξ.+: —hh( θξ�.+ hr tmhptdkx cdzmdc Wmc

Tξ�.+ hr tmhptd to sn ltkshokhbWshnm ax W bnmrsWms: —hhh( θ− 9 θξ�.+: Wmc —hu( iclk∗�′%θξ�.+(�kC %p( →

Tξ�.+$

Nm sgd cnlhmUms dhfdmuUktd ne N�

LWmx ne sgdrd qdrtksr qdkx nm sgd eWbs sgWs sgd lWfmhstcd ne sgd cnlhmWms dhfdmuWktd —h$d$: sgd

rodbsqWk qWchtr( ne Nξ hr , 0: enq Wkk ξ$ Ud cdlnmrsqWsd sghr ax nardquhmf sgWs dudqx sdql hm lWsqhw

Nξ vhkk hmbktcd W chrbntms sdql —trtWkkx sgd rtquhuWk oqnaWahkhsx ne Wm hmchuhctWk( hm ahnknfhbWk

WookhbWshnmr ne RCO$ Kds

k 9 lcm
,7+.τττ.j

c���

ad sgd rlWkkdrs ne sgdrd chrbntms sdqlr$ Oqnuhcdc sgdqd hr W mnm/ydqn qWsd ne lnqsWkhsx nudq dWbg

shld rsdo: rn λ, / +: sgdmk , 0$ He vd eWbsnq ntsk: vd bWm qdvqhsd Nξ Wr Nξ 9 k xNξ$ Rhmbd xNξ hr

W rta/rsnbgWrshb lWsqhw: vhsg dWbg qnv rtllhmf sn∗ 0: hsr rodbsqWk qWchtr hr∗ 0 —h$d$: π% xNξ( ∗ 0($

Sgdm

π%Nξ( 9 π%k xNξ( 9 kπ% xNξ( , 0ψ
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Cwhrsdmbd: tmhptdmdrr: Umc rsqtbstqd ne sgd noshlUk rsUshnmUqx rnktshnm enq sgd

rdbnmc bUmnmhbUk dptUshnm

Sgd enkknvhmf qdrtksr Wmc sgdhq oqnner bWm ad entmc hm OtsdqlWm —fl883($ Ud qdrsWsd sgd qdkduWms

sgdnqdlr gdqd enq qdedqdmbd: vhsg mnsWshnm bgWmfdc enq bnmrhrsdmbx$ Sgd dwhrsdmbd ne W tmhptd

rnktshnm xCξ enq Wmx rsWshnmWqx onkhbx ξ hr ftWqWmsddc ax Sgdnqdl 5$1$4$ Sgd enql ne sghr rnktshnm

enq Wmx rsWshnmWqx onkhbx hr cdrbqhadc hm Sgdnqdl 5$fl$fl$ Sgd dwhrsdmbd ne Wm noshlWk rsWshnmWqx

onkhbx hr ftWqWmsddc ax Sgdnqdl 5$1$fl9 enq Wm hmzmhsd gnqhynm oqnakdl —sgd WmWkWfntr sgdnqdl enq

W zmhsd gnqhynm oqnakdl bWm ad entmc hm Oqnonrhshnm 3$3$2 hm OtsdqlWm —fl883(($ Sgdnqdl 5$1$6b

rsWsdr sgWs sghr noshlWk rsWshnmWqx onkhbx gWr sgd kWqfdrs rnktshnm xC nts ne Wkk onrrhakd onkhbhdr$

Sgdnqdl 50104 -OtsdqlUm -z773(( Rtoonrd Nξ gTr T rodbsqTk qTchtr , 0. sgd rds ne onrrhakd

rsTsdr τ hr ymhsd. Tmc sgd hlldchTsd qdvTqcr Fξ Tqd antmcdc enq Tkk onkhbhdrfi Sgdm sgdqd dwhrsr T

tmhptd rnktshnm xCξ rTshrexhmf xCξ 9 Fξ ) Nξ
xCξfi

Sgdnqdl 50z0z -OtsdqlUm -z773(( Rtoonrd Nξ gTr T rodbsqTk qTchtr , 0fi Sgdm enq Tmx rsTshnm;

Tqx onkhbx ξ. xCξ hr sgd tmhptd rnktshnm ne

xCξ 9 Fξ ) Nξ
xCξψ

Etqsgdq. xCξ lTx ad vqhssdm Tr

xCξ 9 %G � Nξ(
�+Fξψ

Sgdnqdl 5010z9 -OtsdqlUm -z773(( �rrtld sgd rds ne onrrhakd rsTsdr τ hr chrbqdsd Tmc sgTs sgd

rds ne onrrhakd Tbshnmr hr ymhsd enq Tm hmchuhctTk hm dTbg rsTsd t ∞ τfi Sgdm sgdqd dwhrsr Tm noshlTk

rsTshnmTqx onkhbx ξ−fi
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Sgdnqdl 50106b -OtsdqlUm -z773(( Jds τ ad chrbqdsd. sgdm sgd rnktshnm ne xCξ� 9 Fξ� ) Nξ�
xCξ�

rTshrydr

xCξ� 9 lˆs
ξ∞�

xCξψ

R2 �nmchshnmr ne oqhlhshuhsx

� mnmmdfWshud lWsqhw N hr oqhlhshud he N µ / + enq rnld hmsdfdq µ / +$ Sgd oqhlhshuhsx ne W

mnmmdfWshud lWsqhw bWm ad cdsdqlhmdc hm rdudqWk cheedqdms vWxr —rdd BWrvdkk —199fl(: Rdb$ 3$4$fl$1

enq W fnnc nudquhdv($ Ehqrs: sqhWk Wmc dqqnq lWx xhdkc W rthsWakd µ rtbg sgWs dWbg ne sgd dmsqhdr hm

N µ hr / +$ �ksdqmWshudkx: oqhlhshuhsx bWm ad Wrrdrrdc fqWoghbWkkx ax knnjhmf Ws sgd chqdbsdc fqWog

cdrbqhahmf oqnaWahkhrshb rsWsd bgWmfdr —d$f$: Ehftqd fl($ � chqdbsdc fqWog —Wmc WrrnbhWsdc lWsqhw(

hr hqqdctbhakd he hs hr rsqnmfkx bnmmdbsdc–h$d$: W oWsg dwhrsr eqnl dWbg mncd sn dudqx nsgdq mncd$

�m hqqdctbhakd fqWog hr oqhlhshud he sgd fqdWsdrs bnllnm chuhrnq ne sgd kdmfsgr ne sgnrd knnor hr fl

—PnrdmakWss: fl846($

R3 SqUmrhdms nrbhkkUshmf cdbhrhnmr hm rsnbgUrshb cxmUlhb oqn,

fqUllhmf

Bnmrhcdq Wm RCO lncdk vhsg zsmdrr etmbshnmr —fl(: sgd zqrs bWmnmhbWk dptWshnm ne RCO lncdkr hm

ahnknfx$ Tmcdq sgd bnmchshnmr ntskhmdc hm sgd lWhm sdws: sgd rsWshnmWqx onkhbx ξ− hr sgWs bnqqdronmc/

hmf sn sgd lWsqhw Nξ� vhsg sgd kWqfdrs cnlhmWms dhfdmuWktd nts ne Wkk onrrhakd onkhbhdr ξ ∞ �$ Enq

Wm RCO lncdk vhsg W zmhsd shld gnqhynm: sghr hr sgd onkhbx vghbg vhkk ad noshlWk Wr p← �∝ —h$d$:

Wr vd fds etqsgdq WvWx eqnl sgd sdqlhmWk shld($

Ud dwoknqd bnmudqfdmbd sn sgd rsWshnmWqx onkhbx: trhmf hmsthshnm eqnl sgd sgdnqx ne lWsqhw
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onotkWshnm lncdkr —BWrvdkk: 199fl($ LWsqhw onotkWshnm lncdkr fdmdqWkkx sWjd sgd enqlI%p)0( 9

>I%p($ �mWknfntrkx: vd bnmrhcdq W lncdk ne sgd enql

C %p( 9 N C %p) 0(. —R3$fl(

enq rnld oqhlhshud lWsqhw N vhsg W rodbsqWk qWchtr , 0 Wmc mnmmdfWshud sdqlhmWk bnmchshnm C %R (

vhsg Ws kdWrs nmd mnmydqn dmsqx$ Sgd rnktshnm sn —R3$fl( hr

C %R � ρ( 9
j⎥

i7+

biθ
π
iTi

vgdqd bi hr W rbWkWq: Wmc θi Wmc Ti Wqd dhfdmuWktd Wmc bnqqdronmchmf qhfgs dhfdmudbsnq oWhqr ne N

—BWrvdkk: 199fl($ Sgtr sgd rsqtbstqd ne C hr hmfitdmbdc hmhshWkkx ax sgd rtacnlhmWms dhfdmuWktdr

—h$d$: dhfdmuWktdr rlWkkdq hm lWfmhstcd sgWm sgd cnlhmWms dhfdmuWktd( Wmc bnqqdronmchmf dhfdm/

udbsnqr ne N : Wr ρ ← ∝$ He θi hr onrhshud: sgdm sgd bnmsqhatshnm ne Ti hr dwonmdmshWkkx cdbqdWrhmf

—rhmbd }θi} , 0. enq Wkk i($ He �0 , θi , +: sgdm sghr sdql bnmsqhatsdr cWlodc nrbhkkWshnmr vhsg

odqhnc 1$ He θi Wmc θi)+ Wqd bnlokdw bnmitfWsdr: θi 9 V) ag Wmc θi)+ 9 V� ag: vd lWx trd onkWq

bnnqchmWsdr: rn θi 9 }θi}%ano η ) g ocm η( Wmc θi)+ 9 }θi}%ano η � g ocm η($ Sgd bnmsqhatshnm ne sghr

oWhq Wkrn nrbhkkWsdr: vhsg odqhnc 1ξ<η —BWrvdkk: 199fl($

Sgd cWlohmf qWshn hr cdzmdc Wr χ 9 θ+<}θ1} —BWrvdkk: 199fl($ He χ hr bknrd sn fl: W rhfmhz/

bWms hmfitdmbd eqnl θ1 Wmc T1 vhkk odqrhrs enq W knmf shld adenqd sgd cxmWlhbr Wqd WrxlosnshbWkkx

fnudqmdc nmkx ax θ+ Wmc T+$ Enq hmbqdWrhmf uWktdr ne χ: sgd hmfitdmbd ne θ1 —Wmc Wkk rtardptdms

dhfdmuWktdr( cdbWxr hmbqdWrhmfkx qWohckx$

Pdstqmhmf sn sgd RCO lncdk —fl(: sgdrd bnmbdosr dwokWhm sgd bnmudqfdmbd adgWuhntq ne C %p(

Wr p ← �∝$ Enq dwWlokd: he θξ�.1 hr dhsgdq mdfWshud nq bnlokdw uWktdc: vd dwodbs sn rdd nrbhkkW/
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shnmr hm sgd rsqtbstqd ne C %p( mdWq sgd sdqlhmWk shld$ He sgd cWlohmf qWshn χ 9 θξ�.+<}θξ�.1} hr bknrd

sn fl: vd dwodbs sgdrd nrbhkkWshnmr sn ad WooWqdms enq knmfdq sgWm he sgd cWlohmf qWshn hr udqx kWqfd$

Gnvdudq: tmkhjd hm —R3$fl(: sgd lWsqhw N hr mns zwdc hm shld$ He sgd nrbhkkWshnmr hm sgd rsqtbstqd ne

C %p( Wqd rtezbhdmskx kWqfd–nq: WmWknfntrkx: he sgdqd dwhrsr Wmnsgdq onkhbx ξ→ Wmc lWsqhw Nξ∗ vhsg

qhfgs dhfdmudbsnq Tξ∗.+ rtezbhdmskx rhlhkWq sn Tξ�.+–sgd WksdqmWshud onkhbx ξ→ lWx ad noshlWk odqh/

nchbWkkx: qdrtkshmf hm nrbhkkWshmf cdbhrhnm qtkdr$ Sgdrd nrbhkkWshnmr vhkk bnmshmtd tmshk sgd hmfitdmbd

ne θξ�.1 hr rtezbhdmskx rlWkk bnloWqdc sn θξ�.+ Wmc sgd rsqtbstqd ne C %p( hr udqx bknrd sn Tξ�.+$

Sgdrd nrbhkkWshnmr bWm ad sgntfgs ne Wr Wm WqsheWbs ne mns gWuhmf Wmx bnrs ne rvhsbghmf rsqWsdfhdr$

Ud rtrodbs sgWs hmsqnctbhmf W rlWkk bnrs enq rvhsbghmf cdbhrhnmr: W jhmc ne adgWuhnqWk hmdqshW —rdd:

d$f$: —CtjWr Wmc BkWqj: fl884, Andsshfdq ds Wk$: 19fl5((: vntkc qdlnud sgdrd nrbhkkWshnmr$ Gnvdudq:

enq lncdkr sgWs cn mns hmbktcd sghr bnrs: hs lWx ad qdWrrtqhmf sn jmnv sgWs nrbhkkWshmf noshlWk onkh/

bhdr lWx Wqhrd eqnl sgd lncdk rsqtbstqd: qWsgdq sgWm adhmf sgd qdrtks ne W mtldqhbWk dqqnq$ Ud rgnv

adknv gnv sgdrd nrbhkkWshnmr bWm Wqhrd dudm hm W udqx rhlokd lncdk$

Pduhrhshmf sgd hkktrsqUshud oUsbg bgnhbd dwUlokd

Enq sgd noshlWk onkhbx ξ− 9 ∈oWsbg 1. oWsbg 1. oWsbg 0. oWsbg 0. oWsbg 0{: sgd lWsqhw Nξ� gWr cnlh/

mWms dhfdmuWktd θ+ 9 +ψ76: Wmc rtacnlhmWms dhfdmuWktdr θ1 9 �+ψ3+)+ψ51g: θ2 9 �+ψ3+�+ψ51g:

rn sgd cWlohmf qWshn hr χ 9 +ψ76< } � +ψ3 ) +ψ51g} 9 0ψ21$ Sgtr vd dwodbs sn rdd nrbhkkWshnmr hm

C %p( mdWq sgd sdqlhmWk shld: ats oqdchbs sgdx rgntkc chd nts eWhqkx pthbjkx —Ehftqd 1($

Ud mnv bgWmfd nmd oWqWldsdq: cdbqdWrhmf sgd oqnaWahkhsx ne zmchmf ennc hm ansg oWsbgdr: sn

β+ 9 +ψ2 Wmc β1 9 +ψ5$ �kk nsgdq oWqWldsdqr qdlWhm sgd rWld$ Enkknvhmf sgd rWld rsdor Wr adenqd:

vd zmc sgd rWld noshlWk onkhbx: ξ− 9 ∈oWsbg 1: oWsbg 1: oWsbg fl: oWsbg fl: oWsbg fl{$ Gnvdudq: mnv

sgd cnlhmWms dhfdmuWktd ne Nξ� hr θ+ 9 +ψ73: sgd rtacnlhmWms dhfdmuWktdr Wqd θ1 9 �+ψ31)+ψ55g

Wmc θ2 9 �+ψ31 � +ψ55g: qdrtkshmf hm χ 9 0ψ10$ Ud WfWhm oqdchbs nrbhkkWshnmr hm C %p(: ats sgdrd
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nrbhkkWshnmr vhkk gWud W kWqfdq deedbs nm sgd cxmWlhbr Wmc vhkk ad duhcdms etqsgdq eqnl sgd sdqlhmWk

shld sgWm enq sgd oqduhntr oWqWldsdq rds$ Sgdrd nrbhkkWshnmr Wqd mnv rtezbhdmskx kWqfd sgWs sgd

onkhbx ξ→ 9 ∈oWsbg 1. oWsbg 1. oWsbg 1. oWsbg 0. oWsbg 0{ hr noshlWk odqhnchbWkkx —Ehftqd Rfl($
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direction of backwards induction

Ehftqd Rfl. Rnktshnm —nasWhmdc trhmf aWbjvWqcr hmctbshnm, Wqqnv Ws sno( ne sgd hkktrsqWshud oWsbg

bgnhbd dwWlokd: Wr cdrbqhadc hm Ehftqd 1: ats vhsg W qdctbdc oqnaWahkhsx ne zmchmf oqdx$ Enq sghr

oWqWldsdq rds: nardqud sgd nrbhkkWshmf cdbhrhnmr oqdchbsdc hm sgd anssnl oWmdk$
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R4 Fnhmf eqnl sgd ahnknfhbUk oUqUrhsnhc vUro oqnakdl sn sgd

bnqqdronmchmf lUsqhw lncdk

Ud gdqd cdrbqhad: hm lnqd cdsWhk: gnv sn fn eqnl W ahnknfhbWk tmcdqrsWmchmf ne sgd oWqWrhsnhc vWro

dwWlokd sn sgd lWsqhw enqltkWshnm ne sgd lncdk$ Ud adfhm ax bnmrsqtbshmf sgd chqdbsdc fqWogr

cdrbqhahmf sgd rsWsd bgWmfdr onrrhakd nudq nmd shld rsdo$ Sgdqd Wqd entq onrrhakd rsWsd bgWmfdr sgWs

Wm hmchuhctWk hm rsWsd t bntkc dwodqhdmbd eqnl shld p sn p) 0: vghbg vd Wccqdrr adknv.

—h( he sgd hmchuhctWk chdr. t← +$

—hh( he mn gnrs hr dmbntmsdqdc. t← t� 0

—hhh( he W gnrs hr dmbntmsdqdc Wmc oWqWrhshydc. t← t� 0� α

—hu( he W gnrs hr dmbntmsdqdc Wmc sgd hmchuhctWk gnrs eddcr. t← t� 0 ) �

-h( HmchuhctUk chdr. t← +

Sgd hmchuhctWk gWr oqnaWahkhsx %0 � c��( ne cxhmf nudq dWbg shld rsdo: Ws vghbg onhms vd Wrrtld

t ← +$ Hm W chqdbsdc fqWog: sghr vntkc ad qdoqdrdmsdc ax Wm Wqqnv eqnl dWbg rsWsd sn + —Ehftqd

R1($ Mnsd sgWs sgqntfgnts sghr rdbshnm: vd cn mns kWadk dudqx Wqqnv sn lWhmsWhm qdWcWahkhsx ne sgd

chqdbsdc fqWogr: ats dWbg Wqqnv ne W rhlhkWq sxod gWr sgd WooqnoqhWsd rhlhkWq kWadk$

+ 0 1 − − − 64

%0� c��(

Ehftqd R1

fl9



Enq sgd bqdWshnm ne lWsqhw N : vd hfmnqd Wkk oqnbdrrdr WrrnbhWsdc vhsg sghr Warnqahmf rsWsd Wmc

trd fqdx enq sgdl hm Wkk ne ntq chqdbsdc fqWogr sn dlogWrhyd sghr onhms$ Gnvdudq: vgdm vd vhrg sn

trd sgd ldsgnc ne LWqjnu bgWhmr kWsdq nm: sgdrd oqnbdrrdr Wqd hmbktcdc hm sgd LWqjnu lWsqhw$

-hh( Mn gnrs dmbntmsdqdc. t← t� 0

PdfWqckdrr ne sgd hmchuhctWk@r rsWsd: W gnrs hr mns dmbntmsdqdc vhsg oqnaWahkhsx %0� β(: bnmchshnmWk

nm sgd hmchuhctWk@r rtquhuWk —oqnaWahkhsx c��($ Ud qdoqdrdms sgdrd oqnaWahkhshdr vhsg Wqqnvr fnhmf

eqnl dWbg rsWsd t sn rsWsd t� 0 hm W chqdbsdc fqWog —Ehftqd R2($

+ 0 1 − − − 63 64

c��%0� β( c��%0� β(

Ehftqd R2

Ud mnv bnmrsqtbs sgd bnqqdronmchmf sqWmrhshnm lWsqhw N $ Adfhm vhsg W rptWqd lWsqhw ne

ydqnr: vhsg chldmrhnmr 64 · 64$ Sgd qnv mtladq bnqqdronmcr sn vgdqd sgd Wqqnvr Wqd kdWuhmf

”eqnl; Wmc sgd bnktlm mtladq hr vgdqd sgd Wqqnvr Wqd fnhmf ”sn; hm sgd chqdbsdc fqWog$ Sgd

sqWmrhshnm oqnaWahkhsx Wrrhfmdc sn dWbg Wqqnv hm sgd chqdbsdc fqWog fnhmf eqnl rsWsd t sn t� 0 mnv

fdsr okWbdc hm knbWshnm m%t. t� 0( hm lWsqhw N —h$d$: sgd dmsqx hm qnv t Wmc bnktlm t� 0($ Ehftqd

R2 sgtr bnqqdronmcr sn

N 9

�

⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎤

+ + − − − − − − +

c��%0� β( + − − − − − − +

+ c��%0� β(

$$$ $ $ $

+ − − − c��%0� β( +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ —R4$fl(

flfl



-hhh( Gnrs dmbntmsdqdc Umc oUqUrhshydc. t← t� 0� α

He W gnrs hr dmbntmsdqdc —oqnaWahkhsx β(: sgd hmchuhctWk ltrs lWjd W cdbhrhnm vgdsgdq sn oWqWrhshyd

nq gnrs eddc$ PdbWkk sgWs cdbhrhnm g 9 0 cdmnsdr oWqWrhshyhmf Wmc g 9 1 cdmnsdr gnrs eddchmf$

He sgd hmchuhctWk bgnnrdr sn oWqWrhshyd qdfWqckdrr ne rsWsd —vghbg vd gdqd cdmnsd onkhbx ξΠ+( 9

∈0. 0. ψ ψ ψ . 0{(: sgdm rsWsd bgWmfdr eqnl t← t�0�α$ Ud gdqd trd sgd uWktd α 9 3: rn t← t�4$

Athkchmf eqnl Ehftqd R2: vd Wcc sgdrd Wqqnvr —hm nqWmfd( sn bnlokdsd sgd chqdbsdc fqWog enq onkhbx

ξΠξ( —Ehftqd R3($

+ 0 − − − 4 5 − − − 6+ − − − 64

c��%0� β( c��%0� β(

c��β
c��β c��β

c��β

Ehftqd R3

Ud mnv Wcc sgd dmsqhdr bnqqdronmchmf sn sgd nqWmfd Wqqnvr sn —R4$fl(: rdsshmf m%t. t�4( 9 β

enq Wkk t ≤ 5: qdrtkshmf hm

Nξ�)(
9

�

⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎤

+ + − − − +

c��%0� β( + − − − +

+ c��%0� β( +

$$$ $ $ $

c��β +

+ c��β

$$$ $ $ $

+ c��β − − − c��%0� β( +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ —R4$1(

fl1



-hu( Gnrs dmbntmsdqdc Umc trdc enq gnrs eddchmf. t← t� 0 ) �

He W gnrs hr dmbntmsdqdc —oqnaWahkhsx β(: Wmc sgd hmchuhctWk WkvWxr bgnnrdr sn gnrs eddc: qdfWqckdrr

ne rsWsd —h$d$: onkhbx ξΠ1( 9 ∈1. 1. ψ ψ ψ . 1{(: sgd rsWsd bgWmfdr eqnl t← t�0)�: WfWhm: bnmchshnmWk

nm rtquhuWk —oqnaWahkhsx c��($ Rhmbd � 9 2+: sghr ldWmr t ← t ) 17 vhsg oqnaWahkhsx β$ �fWhm

athkchmf eqnl Ehftqd R2: vd Wcc sgdrd Wqqnvr —hm fqddm( sn bnlokdsd sgd chqdbsdc fqWog enq onkhbx

ξΠ1( —Ehftqd R4($

+ 0 − − − 2+ − − − 34 35 36 − − − 63 64

c��%0� β( c��%0� β(

c��β

Ehftqd R4

Sgd Wqqnvr qdoqdrdmshmf rsWsd bgWmfdr bWtrdc ax gnrs eddchmf —fqddm Wqqnvr( qdrtks hm lWsqhw

dmsqhdr m%t. t ) 17( 9 c��β enq Wkk t ∗ 35$ Mnsd: gnvdudq: vgWs gWoodmr he Wm hmchuhctWk hm rsWsd

t 9 36 gnrs eddcr, sgdhq rsWsd bWmmns hmbqdWrd sn t ) 17 9 65: Wr hs sgdm dwbddcr sgd lWwhltl

onrrhakd rsWsd ne t 9 64$ Ud gWud Wrrtldc sgWs Wm hmchuhctWk bWm hmbqdWrd sgdhq rsWsd sn W lWwhltl

fl2



ne 64: rn enq t ≤ 36: t← 64: vghbg bnqqdronmcr sn lWsqhw dmsqhdr m%t. 64($ Sghr qdrtksr hm lWsqhw

Nξ�1(
9

�

⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎤

+ + − − − c��β + − − − +

c��%0� β( + − − − + c��β − − − +

+ c��%0� β(
$ $ $

$ $ $ c��β +

+ c��β

$$$ c��β

$ $ $ $$$

+ − − − + c��%0� β( c��β

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ —R4$2(

�qdUsd sgd lUsqhw enq Umx onkhbx ξ

Ud gWud bqdWsdc sgd chqdbsdc fqWogr Wmc lWsqhbdr enq onkhbhdr bnmrhrshmf dmshqdkx ne dhsgdq oWq/

Wrhshyhmf nq gnrs eddchmf —ξΠ+( 9 ∈0. ψ ψ ψ . 0{ Wmc ξΠ1( 9 ∈1. ψ ψ ψ . 1{: qdrodbshudkx(: qdfWqckdrr ne

sgd hmchuhctWk@r rsWsd$ Eqnl sgdrd svn dwsqdldr: vd bWm bnmrsqtbs sgd lWsqhw enq Wmx onkhbx

ξ 9 ∈g+. ψ ψ ψ . g53{$ Nardqud sgWs W fhudm qnv–rWx: qnv ti–bnqqdronmcr sn Wkk ne sgd onrrhakd

Wqqnvr kdWuhmf eqnl rsWsd ti hm sgd WrrnbhWsdc chqdbsdc fqWog$ Sgtr: sgd cdbhrhnm gti lWcd ax Wm

hmchuhctWk hm rsWsd ti Weedbsr Wkk ne sgd dmsqhdr hm sgWs qnv$

Enq W fhudm onkhbx ξ 9 ∈g+. ψ ψ ψ . g53{: sgd bnqqdronmchmf lWsqhw lWx ad bnmrsqtbsdc eqnl

sgd WooqnoqhWsd qnvr eqnl sgd bnqqdronmchmf lWsqhbdr cdzmdc Wanud$ Enq dwWlokd: bnmrhcdq ξ→ 9

∈1. 0. ψ ψ ψ . 0{: vgdqd sgd hmchuhctWk oWqWrhshydr tmkdrr rgd hr hm sgd knvdrs rsWsd$ Sgd zqrs qnv ne sgd

WrrnbhWsdc sqWmrhshnm lWsqhw vhkk ad sgd zqrs qnv eqnl Nξ�1(
hm —R4$2(: vghkd sgd qdrs ne sgd qnvr vhkk

fl3



bnld eqnl Nξ�)(
hm —R4$1(: h$d$:

Nξ∗ 9

�

⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎤

+ + − − − c��β − − − +

c��%0� β( + − − − +

+ c��%0� β( +

$$$ $ $ $

c��β +

+ c��β

$$$ $ $ $

+ c��β − − − c��%0� β( +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ —R4$3(

RhlhkWqkx: he bnmrhcdqhmf onkhbx ξ→→ 9 ∈0. ψ ψ ψ . 0. 1{: Wkk qnvr vntkc ad Wr hm Nξ�)(
hm —R4$1( dwbdos

enq sgd kWrs qnv: vghbg vntkc ad Wr hm Nξ�1(
hm —R4$2($ DWbg lWsqhw Nξ lWx ad bnmrsqtbsdc hm sghr

vWx: nmbd sgd rsqtbstqd ne dWbg qnv gWr addm cdzmdc enq dWbg onkhbx Wr vd gWud cnmd Wanud$

PdvUqcr udbsnq F

PdbWkk sgWs he Wm hmchuhctWk bgnnrdr sn oWqWrhshyd W gnrs: gdq zsmdrr hr hlldchWsdkx hmbqdldmsdc ax

fl$ He rgd bgnnrdr sn gnrs eddc hmrsdWc: sgdhq zsmdrr cndr mns rdd sghr hlldchWsd qdvWqc$ Sgd qdvWqcr

udbsnqF bWostqdr sghr: vhsgFξ 9 =eξ.+. ψ ψ ψ . eξ.53[
′$ Enq dwWlokd: enq sgd onkhbx ξ→ 9 ∈1. 0. ψ ψ ψ . 0{:

Fξ∗ 9 =+. 0. ψ ψ ψ . 0[: rhmbd eξ∗.t 9 0 enq Wkk rsWsdr t dwbdos rsWsd t+: enq vghbg eξ∗.+ 9 +$

Enq dWbg onkhbx ξ: vd gWud mnv bnmrsqtbsdc sgd bnqqdronmchmf Nξ Wmc Fξ Wmc bWm sgtr bWk/

btkWsd Cξ 9 %G�Nξ(�+Fξ: vgdqd G hr sgd hcdmshsx lWsqhw vhsg chldmrhnmr 64·64$ Enq Wm dwWlokd

ne gnv sn hlokdldms sghr trhmf LWskWa: rdd sgd bncd oqnuhcdc Ws cnh.fl9$417fl“ydmncn$14367fl4$

Enq vnqjhmf hm P: rdd Rdbshnm Rfl enq W pthbj khrs ne sgd mdbdrrWqx P bnllWmcr$

fl4



Trhmf N enq IUqinu bgUhmr

Nmd ne sgd admdzsr ne trhmf lWsqhw mnsWshnm sn enqltkWsd Wm RCO lncdk hr sgd dWrd vhsg vghbg

nmd lWx sgdm trd LWqjnu bgWhmr sn oqdchbs sgd oqnaWahkhsx chrsqhatshnm ne Wm noshlWkkx adgWuhmf

hmchuhctWk@r rsWsd$ Nmkx nmd etqsgdq rsdo qdlWhmr. sn bnmudqs lWsqhw N eqnl W rtarsnbgWrshb lWsqhw

sn sgd etkk LWqjnu —rsnbgWrshb( lWsqhw ]N $ Enq sgd oWqWrhshb vWro dwWlokd: sghr ldWmr hmbktchmf Wkk

sqWmrhshnmr sn Warnqahmf rsWsd t 9 +: rn sgWs Wkk qnvr rtl sn fl —h$d$: sgd fqdx Wqqnvr hm Wkk ne ntq

chqdbsdc fqWogr Wanud($ Ugdm sgdrd sqWmrhshnmr Wqd hmbktcdc hm sgd WrrnbhWsdc lWsqhw ]N : hs adbnldr

W 65· 65 lWsqhw: vhsg Wm WcchshnmWk bnktlm Wccdc nm sgd kdes Wmc Wm WcchshnmWk qnv Wccdc nm sgd

sno —qnv Wmc bnktlm ”ydqn;(: bWostqhmf Wkk sqWmrhshnmr sn Wmc eqnl rsWsd t 9 +$ Nmbd Wkk ne sgdrd

onrrhakd sqWmrhshnmr gWud addm hmbktcdc: dWbg qnv vhkk rtl sn fl$

Enq dwWlokd: bnmrhcdq WfWhm sgd onkhbx ne WkvWxr oWqWrhshyhmf: h$d$: ξΠ+( 9 ∈0. ψ ψ ψ . 0{$ Ugdm

vd bnmrhcdq Wkk onrrhakd rsWsd bgWmfdr: hmbktchmf sgnrd sn sgd Warnqahmf rsWsd: sgd rtarsnbgWrshb

lWsqhw ne —R4$1( adbnldr sgd rsnbgWrshb lWsqhw:

]Nξ�)(
9

�

⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎦⎤

0 + + − − − +

0 + + − − − +

%0� c��( ) βc�� %0� β(c�� + − − − +

%0� c��( ) βc�� + %0� β(c�� +

$$$ $ $ $

%0� c��( c��β +

%0� c��( + β

$$$ $ $ $

%0� c��( + β − − − 0� β +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. —R4$4(
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vgdqd Wkk dmsqhdr hm fqdx Wqd WrrnbhWsdc vhsg sgd Warnqahmf rsWsd$ Enq W fhudm onkhbx ξ Wmc bnqqd/

ronmchmf LWqjnu lWsqhw ]Nξ: sgd LWqjnu bgWhm hr cdrbqhadc Wr hm —8($

Pdedqdmbdr
Andsshfdq: B$: Ancd: L$: RWmbghqhbn: I$ M$: KWqhuhdqd: I$: GWrshmfr: �$: Wmc �qlrvnqsg: O$ P$ —19fl5($
NoshlWk lWmWfdldms ne W rsnbgWrshbWkkx uWqxhmf onotkWshnm vgdm onkhbx Wcitrsldms hr bnrskx$
Dbnkfi �ookfi: 15—2(.797-7fl6$

BWrvdkk: G$ —199fl($ LTsqhw NnotkTshnm Lncdkr$ RhmWtdq: RtmcdqkWmc: L�: rdbnmc dchshnm$

CtjWr: P$ Wmc BkWqj: B$ U$ —fl884($ RdWqbghmf enq bqxoshb oqdx. W cxmWlhb lncdk$ Dbnknfx:
65—3(.fl219-fl215$

Fqdx: C$ P$ —fl873($ Mnm/mdfWshud lWsqhbdr: cxmWlhb oqnfqWllhmf Wmc W gWqudrshmf oqnakdl$ Ffi
�ookfi NqnaTafi: 1fl—3(.574-583$

LbMWlWqW: I$ L$ —fl889($ Sgd onkhbx vghbg lWwhlhrdr knmf/sdql rtquhuWk ne Wm WmhlWk eWbdc vhsg
sgd qhrjr ne rsWquWshnm Wmc oqdcWshnm$ �cufi �ookfi NqnaTafi: 11—1(.184-297$

LbMWlWqW: I$ L$ —fl88fl($ NoshlWk khed ghrsnqhdr. W fdmdqWkhyWshnm ne sgd Odqqnm/Eqnadmhtr Sgdn/
qdl$ Sgdnqfi Nnotkfi Ahnkfi: 39.129-134$

OtsdqlWm: L$ K$ —fl883($ LTqinu Bdbhrhnm Nqnbdrrdr, Bhrbqdsd RsnbgTrshb BxmTlhb NqnfqTllhmf$
Ingm Uhkdx ] Rnmr: Gnanjdm: Mdv Idqrdx$

PnrdmakWss: C$ —fl846($ Nm sgd fqWogr Wmc Wrxlosnshb enqlr ne zmhsd annkdWm qdkWshnm lWsqhbdr Wmc
rsnbgWrshb lWsqhbdr$ MTufi Qdrfi Jnfhrsfi Pfi: 3.fl4fl-fl56$

RkWcjx: J$ —fl865($ Nm cxmWlhb oqnfqWllhmf qdbtqrhnmr enq ltkshokhbWshud LWqjnu cdbhrhnm
bgWhmr$ Hm LTsgfi NqnfqTlfi Rstcx: unktld 5: oWfdr 1fl5-115$ Mnqsg/GnkkWmc Otakhrghmf Bnl/
oWmx$

fl6


